Температурный коэффициент. Тепло и холод в электронике.

Твой пытливый взор уже много раз встречал сокращения ТКС, ТКЕ, ТКИ. Может быть там же были и их расшифровки. Если же нет, то я хочу рассказать, что это такое и чем они могут быть полезны. Давай сегодня поговорим о температурном коэффициенте и его роли в электронике.

Итак, чтобы далеко не бегать, сразу разверну сокращения:

  • ТКС - температурный коэффециент сопротивления
  • ТКЕ - температурный коэффициент ёмкости. (По-хорошему ТКЁ!)
  • ТКИ - догадался? Верно - температурный коэффициент индуктивности. 

Общее между ними одно -- они все отражают зависимость изменения номинального значения сопротивления резистора, ёмкости конденсатора или индуктивности моточного изделия (катушки или трансформатора) от изменения температуры окружающей среды.

Скажем, при 20 градусах какой-нибудь резистор имеет сопротивление в 100 Ом, а при 80 чуть больше или меньше. 

"Больше или меньше" написано специально, так как ТКС, ТКИ, ТКЕ могут быть положительными или отрицательными. При положительном температурном коэффициенте номинал увеличивается, а при отрицательном - уменьшается. Такие дела. Если говорить сухо, то

ТКС = ∆R/R

И было бы всё хорошо, да представь себе какой-нибудь каскад с транзистором. Например, каскад с ОЭ:

Для работы транзистора ему всегда задают некий режим, который условно называют "рабочей точкой". Заключается он в том, чтобы задать постоянный ток, протекающий через переход Б-Э. 

И вот всё расчитано, собрано, а ток базы какой-то не такой. И вроде бы номиналы правильно подобраны, а все равно ток плывёт. Убери паяльник с Rб - перегреешь! Rб нагрелся, вот ТКС и сыграл свою партию в общей пьесе и сбил "рабочую точку": Rб задаёт постоянный ток перехода Б-Э, а раз значение сопротивления изменилось, то изменился и ток базы, а значит и ток коллектора, что в свою очеред вызовет изменение Uк и т.д. по цепочке. (кстати, транзистор тоже реагирует на тепло...) Я конечно преувеличиваю, но температура действительно влияет большую роль в изменении значений номиналов радиодеталей.

И схема выше плоха по этой самой причине - она нестабильна и реагирует на температуру как флюгер на ветер. Впрочем, рыдать не стоит, так как в природе существуют методы компенсации ТКС. 

Ниже приведена таблица ТКС некоторых металлов:

Проводник ТКС, 1/°С
Алюминий 4,2*10-3
Вольфрам 5*10-3
Железо 6*10-3
Золото 4*10-3
Латунь (0,1 - 0,4)*10-3
Магний 3,9*10-3
Медь 4,3*10-3
Никель 6,5*10-3
Нихром 1*10-4
Олово 4,4*10-3
Платина 3,9*10-3
Серебро 4,1*10-3
Сталь (1 - 4)*10-3

 

Сопротивление резистора с учетом температуры определяется по формуле:

R(t) = R20 (1 + ТКС*(t - 20))

R20 - сопротивление при температуре окр. среды в 20 градусов Цельсия, t - расчетная температура, для которой вычисляется сопротивление резистора. Эта формула пойдёт и для ТКЕ/ТКИ. 

Справедливости ради, скажу, что ТКС/ТКЕ/ТКИ могуть быть нелинейными. Для большинства металлов ТК будет положительным, для полупроводников и диэлектриков чаще всего будет отрицательным (для чистых полупроводников без примесей). А константан и манганин считай вообще не подвержены пагубным влияниям ТКС. 

Теперь ты гуру температурных коэффициентов. И на последок рубану по жесткому. Формула ТКС на самом деле является дифф. уравнением:

Но оно тебе нафиг не нужно. Живи свободно и держи в уме, что электронные компоненты реагируют на изменение температуры окружающей среды. Какие-то сильно, какие-то слабо. Но реагируют практически все. И это следует учитывать при выборе радиодеталей для устройств. 

Большой радиолюбитель и конструктор программ

Благодаря достижениям электроники у нас есть компьютеры, планшеты, смартфоны и другая популярная техника. Я создал этот сайт для популяризации радиолюбительства. Подписывайтесь на блог, рассылку и группу в ВК: vk.com/mp16a!

Меню