Стабилитрон. Характеристики стабилитронов

Существует такой тип диода как стабилитрон или, как его ещё называют, диод Зенера. В стабилитроне используется тот же самый p-n переход, но работает диод Зенера совсем иначе! 

При создании различных электронных устройств бывает нужно получить стабильное напряжение для питания какой-либо части этого устройства, так как некоторые схемы, особенно на транзисторах, достаточно чувствительны к колебаниям напряжения питания, которое неизбежно по чисто физическим и техническим причинам. 

Один из способов получения такого стабилизированного напряжения -- использование стабилитрона. В зависимости от модели стабилитрона можно поддерживать стабильным напряжение вплоть до 400В. Очень хорошо. Но в радиолюбительской практике высоковольтные стабилитроны редкость и чаще встречаются на 3.3В, 5В, 12В и т.д. 

Конструкция стабилитрона такая же как у диода: p-n переход, два вывода, изолирующая или проводящая (встречается у некоторых советских стабилитронов) оболочка. Но в схеме они используются совсем иначе! Во-первых, стабилитрон подключается минусом к плюсу, а плюсом к минусу. А ты уже знаешь, что при таком подключени диоды ток не проводят. Или проводят? Давай разберёмся.

Принцип работы стабилитрона

Сложно предположить, что еще 70-100 лет назад редкая квартира в городах имела собственную ванную комнату со привычной нам белой чугунной ванной. Если ты сейчас пойдёшь в свою ванную комнату и посмотришь на ванну, то увидишь в ней два отверстия. Одно сливное, расположено на дне ванны, а второе, поменьше, возле края верхнего борта ванны. 

Зачем нужно второе отверстие? Чтобы не затопить соседей! С его помощью ограничивается уровень воды, до которого можно набрать воду в ванну. Как только уровень воды в достигнет защитного отверстия, то лишняя вода будет через это отверстие уходить в канализацию.

Так вот стабилитрон работает аналогично. Как только падение напряжения на нём превысит заданное на заводе значение (3.3В, 5В, 12В и т.д.), стабилитрон отведёт через себя лишний ток, удерживая выходное напряжение на заданном уровне, например, 3.3В

Стабилитрон - это защита от перелива

Пример использования стабилитрона

Возьмём резистор, стабилитрон и соединим их так, как показано на схеме ниже. Стабилитрон включен катодом (минусом) к резистору, а анодом (плюсом) к минусу. Т.е. включен в обратном направлении. В таком положении через стабилитрон протекает ток Iобр - маленький, незначительный ток. Можно считать, что тока практически нет.

Схема включения стабилитрона

Если теперь подать Uвх, то на резисторе Rн будет приблизительно паспортное значение напряжения стабилизации стабилитрона Uст равное 3В, 3.3В, 5В, 12В и т.д. Приблизительное, так как номинал значения любой радиодетали имеет погрешность. Что поделать. Такова жизнь. Кстати, должно выполняться условие Uвх > Uст. Чтобы стбилизация была надежней следует иметь некоторый запас прочности по напряжению.

Если внимательно рассмотреть цепь R1-V1, то можно увидеть хорошо тебе знакомый делитель напряжения. Разница между делителем напряжения из резисторов и делителем напряжения с использованием стабилитрона заключается в том, что если Uвх вдруг слегка увеличится, то и выходное напряжение резистивного делителя напряжения слегка увеличится. И наоборот. 

А вот если вместо резистора в делителе напряжения используется стабилитрон, как на схеме выше, тогда таких изменений Uвых не будет. Конечно при условии, что Uвх ± небольшое изменение > Uвых. 

Достигается это благодаря все тому же эффекту "переливного отверстия", модель которого я использовал, чтобы описать принцип работы стабилитрона.

Характеристики стабилитрона

При использовании стабилитронов следует помнить, что он не всемогущ, а является обычной полупроводниковой деталью. Это значит следует внимательно выбирать для своей схемы подходящий стабилитрон с учетом его характеристик. Для тебя наиболее важными параметрами стабилитрона являются:

  • Максимальный ток стабилизации
  • Напряжение стабилизации

Максимальный ток стабилизации 

Если неправильно выбрать стабилитрон и ток, который будет через неко протекать во время работы схемы окажется больше, чем допустимое заводское значение, то он начнёт нагреваться и со временем перегрется и выйдет из строя. Поэтому следует выбирать стабилитрон так, чтобы его допустимый максимальный ток был значительно больше, чем ток, который будет через него протекать во время работы схемы. 

Напряжение стабилизации

Стабилитроны выпускаются с жестко заданным напряжением стабилизации. Это его паспортное значение, заложенное при изготовлении на заводе. Поэтому, когда ты выбираешь стабилитрон, то первоначально смотришь на паспортное значение напряжения стабилизации, а затем уже на допустимые ток и мощность.

Что ещё важно знать 

Практически все радиодетали зависят от температуры окружающей среды. И стабилитрон тоже. Это означает, что паспортное напряжение стабилизации может измениться, если температура сильно возрастёт или упадёт. Вот пример, отечественный стабилитрон Д814 напряжение стабилизации при Iст = 5 мА:

Маркировка Напряжение стабилизации
При Т = +25°C
Д814А  7...8,5 В
Д814Б  8...9,5 В
Д814В  9...10,5 В
Д814Г  10...12 В
Д814Д  11,5...14 В
При Т = -60°C
Д814А  6...8,5 В
Д814Б  7...9,5 В
Д814В  8...10,5 В
Д814Г  9...12 В
Д814Д  10...14 В

Как видно из таблицы при изменениии температуры меняется и напряжение стабилизации. Незначительно, но все же меняется. Хотел бы я посмотреть на любительский прибор, который должен работать при -60... Но знать о том, что напряжение стабилизации зависит от температуры все же надо. 

Прочитал про стабилитрон, прочитай ещё и про:

 

Большой радиолюбитель и конструктор программ

Благодаря достижениям электроники у нас есть компьютеры, планшеты, смартфоны и другая популярная техника. Я создал этот сайт для популяризации радиолюбительства. Подписывайтесь на блог, рассылку и группу в ВК: vk.com/mp16a!

Меню